Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Journal of Clinical Investigation ; 133(11):1-13, 2023.
Article in English | ProQuest Central | ID: covidwho-20237661

ABSTRACT

There is a large global unmet need for the development of countermeasures to combat hundreds of viruses known to cause human disease and for the establishment of a therapeutic portfolio for future pandemic preparedness. Most approved antiviral therapeutics target proteins encoded by a single virus, providing a narrow spectrum of coverage. This, combined with the slow pace and high cost of drug development, limits the scalability of this direct-acting antiviral (DAA) approach. Here, we summarize progress and challenges in the development of broad-spectrum antivirals that target either viral elements (proteins, genome structures, and lipid envelopes) or cellular proviral factors co-opted by multiple viruses via newly discovered compounds or repurposing of approved drugs. These strategies offer new means for developing therapeutics against both existing and emerging viral threats that complement DAAs.

2.
Biochem Biophys Rep ; 32: 101379, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2271306

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a worldwide pandemic. Ultraviolet (UV) is regarded as a very powerful tool against SARS-CoV-2. However, the inactivating effects of different UV wavelengths on SARS-CoV-2 under the same conditions have hardly been compared. Here, we showed that SARS-CoV-2 cultured in Dulbecco's modified Eagle's medium and 2% fetal bovine serum was efficiently inactivated by irradiation with 222, 254, and 265 wavelengths UV, but not at 308 nm. In addition, it was revealed that UV absorption by DMEM-2% FBS is very efficient at 222 nm. Our results present potentially important information for selecting the optimum UV wavelength according to the application.

3.
RMD Open ; 8(2)2022 09.
Article in English | MEDLINE | ID: covidwho-2029524

ABSTRACT

OBJECTIVE: We investigated prolonged COVID-19 symptom duration, defined as lasting 28 days or longer, among people with systemic autoimmune rheumatic diseases (SARDs). METHODS: We analysed data from the COVID-19 Global Rheumatology Alliance Vaccine Survey (2 April 2021-15 October 2021) to identify people with SARDs reporting test-confirmed COVID-19. Participants reported COVID-19 severity and symptom duration, sociodemographics and clinical characteristics. We reported the proportion experiencing prolonged symptom duration and investigated associations with baseline characteristics using logistic regression. RESULTS: We identified 441 respondents with SARDs and COVID-19 (mean age 48.2 years, 83.7% female, 39.5% rheumatoid arthritis). The median COVID-19 symptom duration was 15 days (IQR 7, 25). Overall, 107 (24.2%) respondents had prolonged symptom duration (≥28 days); 42/429 (9.8%) reported symptoms lasting ≥90 days. Factors associated with higher odds of prolonged symptom duration included: hospitalisation for COVID-19 vs not hospitalised and mild acute symptoms (age-adjusted OR (aOR) 6.49, 95% CI 3.03 to 14.1), comorbidity count (aOR 1.11 per comorbidity, 95% CI 1.02 to 1.21) and osteoarthritis (aOR 2.11, 95% CI 1.01 to 4.27). COVID-19 onset in 2021 vs June 2020 or earlier was associated with lower odds of prolonged symptom duration (aOR 0.42, 95% CI 0.21 to 0.81). CONCLUSION: Most people with SARDs had complete symptom resolution by day 15 after COVID-19 onset. However, about 1 in 4 experienced COVID-19 symptom duration 28 days or longer; 1 in 10 experienced symptoms 90 days or longer. Future studies are needed to investigate the possible relationships between immunomodulating medications, SARD type/flare, vaccine doses and novel viral variants with prolonged COVID-19 symptoms and other postacute sequelae of COVID-19 among people with SARDs.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Rheumatology , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Male , Middle Aged , Surveys and Questionnaires
4.
Antiviral Res ; 204: 105367, 2022 08.
Article in English | MEDLINE | ID: covidwho-1894786

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose serious threats to global health. We previously reported that AAK1, BIKE and GAK, members of the Numb-associated kinase family, control intracellular trafficking of multiple RNA viruses during viral entry and assembly/egress. Here, using both genetic and pharmacological approaches, we probe the functional relevance of NAKs for SARS-CoV-2 infection. siRNA-mediated depletion of AAK1, BIKE, GAK, and STK16, the fourth member of the NAK family, suppressed SARS-CoV-2 infection in human lung epithelial cells. Both known and novel small molecules with potent AAK1/BIKE, GAK or STK16 activity suppressed SARS-CoV-2 infection. Moreover, combination treatment with the approved anti-cancer drugs, sunitinib and erlotinib, with potent anti-AAK1/BIKE and GAK activity, respectively, demonstrated synergistic effect against SARS-CoV-2 infection in vitro. Time-of-addition experiments revealed that pharmacological inhibition of AAK1 and BIKE suppressed viral entry as well as late stages of the SARS-CoV-2 life cycle. Lastly, suppression of NAKs expression by siRNAs inhibited entry of both wild type and SARS-CoV-2 pseudovirus. These findings provide insight into the roles of NAKs in SARS-CoV-2 infection and establish a proof-of-principle that pharmacological inhibition of NAKs can be potentially used as a host-targeted approach to treat SARS-CoV-2 with potential implications to other coronaviruses.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Membrane Proteins , Nerve Tissue Proteins , Pandemics , Protein Serine-Threonine Kinases , SARS-CoV-2 , Transcription Factors , Virus Internalization
6.
RMD Open ; 7(3)2021 09.
Article in English | MEDLINE | ID: covidwho-1398725

ABSTRACT

BACKGROUND: We describe the early experiences of adults with systemic rheumatic disease who received the COVID-19 vaccine. METHODS: From 2 April to 30 April 2021, we conducted an online, international survey of adults with systemic rheumatic disease who received COVID-19 vaccination. We collected patient-reported data on clinician communication, beliefs and intent about discontinuing disease-modifying antirheumatic drugs (DMARDs) around the time of vaccination, and patient-reported adverse events after vaccination. RESULTS: We analysed 2860 adults with systemic rheumatic diseases who received COVID-19 vaccination (mean age 55.3 years, 86.7% female, 86.3% white). Types of COVID-19 vaccines were Pfizer-BioNTech (53.2%), Oxford/AstraZeneca (22.6%), Moderna (21.3%), Janssen/Johnson & Johnson (1.7%) and others (1.2%). The most common rheumatic disease was rheumatoid arthritis (42.3%), and 81.2% of respondents were on a DMARD. The majority (81.9%) reported communicating with clinicians about vaccination. Most (66.9%) were willing to temporarily discontinue DMARDs to improve vaccine efficacy, although many (44.3%) were concerned about rheumatic disease flares. After vaccination, the most reported patient-reported adverse events were fatigue/somnolence (33.4%), headache (27.7%), muscle/joint pains (22.8%) and fever/chills (19.9%). Rheumatic disease flares that required medication changes occurred in 4.6%. CONCLUSION: Among adults with systemic rheumatic disease who received COVID-19 vaccination, patient-reported adverse events were typical of those reported in the general population. Most patients were willing to temporarily discontinue DMARDs to improve vaccine efficacy. The relatively low frequency of rheumatic disease flare requiring medications was reassuring.


Subject(s)
COVID-19 , Rheumatic Diseases , Rheumatology , Adult , COVID-19 Vaccines , Female , Humans , Male , Middle Aged , Rheumatic Diseases/drug therapy , SARS-CoV-2 , Surveys and Questionnaires , Vaccination
7.
Sci Rep ; 11(1): 13804, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1297315

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a pandemic threat worldwide and causes severe health and economic burdens. Contaminated environments, such as personal items and room surfaces, are considered to have virus transmission potential. Ultraviolet C (UVC) light has demonstrated germicidal ability and removes environmental contamination. UVC has inactivated SARS-CoV-2; however, the underlying mechanisms are not clear. It was confirmed here that UVC 253.7 nm, with a dose of 500 µW/cm2, completely inactivated SARS-CoV-2 in a time-dependent manner and reduced virus infectivity by 10-4.9-fold within 30 s. Immunoblotting analysis for viral spike and nucleocapsid proteins showed that UVC treatment did not damage viral proteins. The viral particle morphology remained intact even when the virus completely lost infectivity after UVC irradiation, as observed by transmission electronic microscopy. In contrast, UVC irradiation-induced genome damage was identified using the newly developed long reverse-transcription quantitative-polymerase chain reaction (RT-qPCR) assay, but not conventional RT-qPCR. The six developed long RT-PCR assays that covered the full-length viral genome clearly indicated a negative correlation between virus infectivity and UVC irradiation-induced genome damage (R2 ranging from 0.75 to 0.96). Altogether, these results provide evidence that UVC inactivates SARS-CoV-2 through the induction of viral genome damage.


Subject(s)
Disinfection , RNA, Viral/radiation effects , SARS-CoV-2 , Ultraviolet Rays , Virus Inactivation/radiation effects , Animals , COVID-19/prevention & control , Chlorocebus aethiops , Disinfection/methods , Genome, Viral/genetics , Nucleocapsid Proteins/genetics , RNA, Viral/analysis , SARS-CoV-2/pathogenicity , SARS-CoV-2/radiation effects , Vero Cells
8.
Viruses ; 13(5)2021 05 20.
Article in English | MEDLINE | ID: covidwho-1244139

ABSTRACT

SARS-CoV-2 is the causative agent of COVID-19, which is a global pandemic. SARS-CoV-2 is transmitted rapidly via contaminated surfaces and aerosols, emphasizing the importance of environmental disinfection to block the spread of virus. Ultraviolet C radiation and chemical compounds are effective for SARS-CoV-2 disinfection, but can only be applied in the absence of humans due to their toxicities. Therefore, development of disinfectants that can be applied in working spaces without evacuating people is needed. Here we showed that TiO2-mediated photocatalytic reaction inactivates SARS-CoV-2 in a time-dependent manner and decreases its infectivity by 99.9% after 20 min and 120 min of treatment in aerosol and liquid, respectively. The mechanistic effects of TiO2 photocatalyst on SARS-CoV-2 virion included decreased total observed virion count, increased virion size, and reduced particle surface spike structure, as determined by transmission electron microscopy. Damage to viral proteins and genome was further confirmed by western blotting and RT-qPCR, respectively. The multi-antiviral effects of TiO2-mediated photocatalytic reaction implies universal disinfection potential for different infectious agents. Notably, TiO2 has no adverse effects on human health, and therefore, TiO2-induced photocatalytic reaction is suitable for disinfection of SARS-CoV-2 and other emerging infectious disease-causing agents in human habitation.


Subject(s)
Disinfection/methods , SARS-CoV-2/drug effects , Titanium/pharmacology , Animals , COVID-19/metabolism , Cell Line , Chlorocebus aethiops , Humans , Pandemics , RNA, Viral/drug effects , SARS-CoV-2/pathogenicity , Titanium/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL